% scribe: Saurabh Amin % lastupdate: Oct. 2, 2005 % lecture: 2 % references: Durrett, sections 1.1 and 1.2 % title: Random variables and their distributions % keywords: measurable, random variable, sigma-field, generating sigma-field, Borel sigma-field, product sigma-field, product space, extended real random variable, e.r.r.v., r.v., simple random variable, cdf, cumulative distribution function, distribution % end \documentclass[12pt,letterpaper]{article} \include{macros} \begin{document} \lecture{2}{Random variables and their distributions}{Saurabh Amin} {amins@berkeley.edu} \section{Random variables} % keywords: measurable, random variable % end Let $(\Omega,\mathcal{F})$ and $(S, \mathcal{S})$ be two measurable spaces. A map $X:\Omega\rightarrow S$ is \emph{measurable} or a \emph{random variable} (denoted r.v.) if \begin{align*} X^{-1}(A)\equiv\{\omega: X(\omega)\in A\}\in\mathcal{F} \text{ for all } A\in\mathcal{S} \end{align*} One can write $\{X \in A\}$ or $(X\in A)$ as a shorthand for $\{\omega: X(\omega)\in A\}=X^{-1}(A)$. If $(S,\mathcal{S})=(\R^d,\mathcal{R}^d)$, then $X$ is called a $d$-dimensional random vector. $\mathcal{R}$ is the Borel $\sigma-$field or the $\sigma$-field generated by the open subsets of $\R^n$. An \emph{indicator function} is a classic example of a r.v.\ where $S=\{0,1\}$ and $\mathcal{S}$ is the collection of all subsets of $S$. The indicator function of a set $F\in\mathcal{F}$ is defined as \begin{align*} 1_{F}(\omega)= \begin{cases} 1 \mbox{ if $\omega\in F$}\\ 0 \mbox{ if $\omega\notin F$} \end{cases} \end{align*} If $S=\Omega$, then the identity map on $\Omega$ is a r.v.\ iff $\mathcal{S}\subset\mathcal{F}$. \emph{Fact}: The composition of two measurable maps is measurable. \section{Generation of $\sigma$-field} % keywords: sigma-field, generating sigma-field, Borel sigma-field, product sigma-field, product space % end Let $\mathcal{A}$ be a collection of subsets of $\Omega$. The $\sigma$-field generated by $\mathcal{A}$, denoted by $\sigma(\mathcal{A})$, is the smallest $\sigma$-field on $\Omega$ which contains $\mathcal{A}$. Let $(X_i, i\in I)$ be a family of mappings of $\Omega$ into measurable spaces $(S_i,\mathcal{S}_i)$, $i\in I$. Here, $I\neq\phi$ is an arbitrary index set (i.e., possibly uncountable). The $\sigma$-field generated by $(X_i, i\in I)$, denoted by $\sigma(X_i, i\in I)$, is the smallest $\sigma-$field on $\Omega$ with respect to which each $X_i$ is measurable. If we take $\mathcal{A}=\mathop{\cup}_i(X^{-1}(\mathcal{S}_{i}))$, this case reduces to the previous one. In both the above cases, 'smallest' means the intersection of the collection of $\sigma$-fields with the given property. We now introduce product spaces and product $\sigma-$fields. Given $(S,\mathcal{S})$ and index set $I$, let $\Omega=\prod_{i}{(S_i)}=\{(\omega_{i}, i\in I):\omega_i \in S_i\}$, where each $S_i$ is a copy of $S$. We have $\omega=(\omega_i\in I)\in\Omega$ and projection maps $X_i:\Omega\rightarrow S_i$ such that $X_i(\omega)=\omega_i$. The product $\sigma$-field $\mathcal{F}$ on $\Omega$ is the $\sigma$-field generated by the projections, i.e., $\mathcal{F}=\sigma((X^{-1}(F_i)): F_i\in\mathcal{F}_i)$. \section{Checking measurability} % keywords: measurable, random variable, sigma-field, generating sigma-field % end \begin{theorem} Let $(\Omega,\mathcal{F})$ be a measurable space and $X: \Omega \rightarrow S$. If $S$ has the $\sigma$-field $\sigma(\mathcal{A})$ for an arbitrary collection of sets $\mathcal{A}$, then X is measurable iff $(X\in \mathcal{A})\in \mathcal{F}$ for $A\in \mathcal{A}$. \end{theorem} \begin{proof} We first prove the reverse direction. Since $\{X\in A\}=\{\omega: X(\omega)\in A\}=X^{-1}(A)$, we have \begin{align*} X^{-1}(A^c)=(X^{-1}(A))^c \\ X^{-1}\left(\mathop{\bigcup}_{i}A_i\right)=\mathop{\bigcup}_i X^{-1}(A_i)\\ X^{-1}\left(\mathop{\bigcap}_{i}A_i\right)=\mathop{\bigcap}_i X^{-1}(A_i) \end{align*} Thus, $X^{-1}(\sigma(\mathcal{A}))=\sigma(X^{-1}(\mathcal{A}))$. To prove the forward direction, note that the collection $\mathcal{C}$ of subsets of $S$ given by $\mathcal{C} = \{B\subset S: X^{-1}(B)\in \mathcal{F}\}$ is a $\sigma$-field which contains $\mathcal{A}$ and hence $\sigma(\mathcal{A})$ which is the $\sigma$-field generated by $\mathcal{A}$. \end{proof} Similarly, if $S$ has the $\sigma$-field $\sigma(Y_i, i\in I)$, $X$ is measurable iff each $Y_i\circ X$ is measurable. \section{Real and extended real random variables} % keywords: extended real random variable, e.r.r.v., r.v., simple random variable % end Let $S$ be a metric or topological space. The \emph{Borel $\sigma$-field} on $S$, denoted by $\mathcal{B}(S)$, is the $\sigma$-field generated by open subsets of $S$. If $f:S\rightarrow T$ is a continuous function, then $f$ is measurable from $(S,\mathcal{B}(S))$ to $(T,\mathcal{B}(T))$ by the previous theorem. If $(S,\mathcal{S})=(\R,\mathcal{R})$, then some possible choices of $\mathcal{A}$ are $\{(-\infty,x]:x\in \R\}$ or $\{(-\infty,x):x\in \Q\}$ where $\Q=$ the rationals. For the real line $\R=(-\infty,\infty)$ and extended real line $\bar{\R}=[-\infty,\infty]$, the Borel $\sigma$-fields can be defined as follows. \begin{align*} \mathcal{B}(\R)=\sigma\{(-\infty,x], x\in \R\}\\ \mathcal{B}(\bar{\R})=\sigma\{[-\infty,x], x\in\bar{\R}\} \end{align*} \begin{definition}[Real Random Variable] Let $(\Omega,\mathcal{F})$ be a measurable space. A real random variable (r.r.v.) is a measurable map from $\Omega$ to $\R$. \end{definition} Thus a function $X$ with range $\R$ is a r.v.\ iff $(X\leq x)\in\mathcal{F}$ for all $x\in\R$ (by theorem 2.1). Similarly, extended real random variables (e.r.r.v.) can be defined on range $\bar{\R}$. Operations on real numbers are performed pointwise on real-valued functions, e.g., \begin{align*} Z=X+Y \mbox{ means } Z(\omega)=X(\omega)+Y(\omega) \mbox{ for all $\omega\in\Omega$}\\ \mbox{ and }Z=\lim_{n}Z_n \mbox{ means } Z(\omega)=\lim_{n}Z_n(\omega) \mbox{ for all $\omega\in\Omega$} \end{align*} \emph{Notation for real numbers}: $x\vee y=\max(x,y)$, $x\wedge y=\min(x,y)$, $x^{+}=x\vee 0$, $x^{-}=-(x\wedge 0)$. Note that $\left|x\right|=x^{+}+x^{-}$ and $x=x^{+}-x^{-}$. \begin{theorem} If $X_1, X_2,\ldots$ are e.r.r.v.'s on $(\Omega, \mathcal{F})$, then they are closed under all limiting operations, i.e., \begin{align*}\inf_n{X_n}\text{, }\sup_n{X_n}\text{, }\liminf_n{X_n}\text{, }\limsup_n{X_n}\end{align*} are also e.r.r.v. \end{theorem} \begin{proof} Since the infimum of a sequence is $\omega\}=\sup\{y:F(y)\leq\omega\}\\ X^{-}(\omega):=\inf\{z:F(z)\geq\omega\}=\sup\{y:F(y)<\omega\}\\ \end{align*} \begin{figure} \centering \includegraphics[width=5in]{fig1} \caption{An illustration of some of the important cases to consider in the construction of $X^-$ and $X^+$.} \label{fig} \end{figure} Figure \ref{fig} shows cases to consider carefully. We have $(\omega\leq F(c))\Rightarrow(\omega:X^{-}(\omega)\leq c)$ by definition. Now, $(z>X^{-}(\omega))\Rightarrow(F(z)\geq\omega)$, and so by right continuity of $F$, $(X^{-}(\omega)\leq c) \Rightarrow (\omega\leq F(X^{-}(\omega))\leq F(c))$. Thus $(\omega\leq F(c))\Leftrightarrow(X^{-}(\omega)\leq c)$ so that $\P(X^{-}\leq c)=F(c)$. The variable $X^{-}$ therefore has distribution function $F$, and we call its probability law $\mathcal{L}$. Here, $\mathcal{L}$ is the unique probability measure on $(\R,\mathcal{B})$ such that $\mathcal{L}(\infty,x]=F(x),\forall x$. Now, by definition of $X^{+}$, $(\omega